Genomic potential for polysaccharide deconstruction in bacteria.
نویسندگان
چکیده
Glycoside hydrolases are important enzymes that support bacterial growth by enabling the degradation of polysaccharides (e.g., starch, cellulose, xylan, and chitin) in the environment. Presently, little is known about the overall phylogenetic distribution of the genomic potential to degrade these polysaccharides in bacteria. However, knowing the phylogenetic breadth of these traits may help us predict the overall polysaccharide processing in environmental microbial communities. In order to address this, we identified and analyzed the distribution of 392,166 enzyme genes derived from 53 glycoside hydrolase families in 8,133 sequenced bacterial genomes. Enzymes for oligosaccharides and starch/glycogen were observed in most taxonomic groups, whereas glycoside hydrolases for structural polymers (i.e., cellulose, xylan, and chitin) were observed in clusters of relatives at taxonomic levels ranging from species to genus as determined by consenTRAIT. The potential for starch and glycogen processing, as well as oligosaccharide processing, was observed in 85% of the strains, whereas 65% possessed enzymes to degrade some structural polysaccharides (i.e., cellulose, xylan, or chitin). Potential degraders targeting one, two, and three structural polysaccharides accounted for 22.6, 32.9, and 9.3% of genomes analyzed, respectively. Finally, potential degraders targeting multiple structural polysaccharides displayed increased potential for oligosaccharide deconstruction. This study provides a framework for linking the potential for polymer deconstruction with phylogeny in complex microbial assemblages.
منابع مشابه
DNA Extraction of Almond without Phenol and Liquid Nitrogen
Genomic DNA extraction with a high quantity and quality is a basic requirement in molecular biology. The DNA obtained was free of any contamination proteins, polysaccharide, polyphenols and colored pigments. These compounds would interfere with the genomic isolation procedures and downstream reactions such as restriction enzyme analysis and gene amplification. The isolated genomic DNA was fo...
متن کاملMetagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose
BACKGROUND Microbial consortia represent promising candidates for aiding in the development of plant biomass conversion strategies for biofuel production. However, the interaction between different community members and the dynamics of enzyme complements during the lignocellulose deconstruction process remain poorly understood. We present here a comprehensive study on the community structure an...
متن کاملGlycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.
The genome of Caldicellulosiruptor saccharolyticus encodes a range of glycoside hydrolases (GHs) that mediate plant biomass deconstruction by this bacterium. Two GH-based genomic loci that appear to be central to the hydrolysis of hemicellulosic and cellulosic substrates were examined. XynB-XynF (Csac_2404-Csac_2411) encodes intracellular and extracellular GHs that are active towards xylan and ...
متن کاملA Simple and Rapid Leaf Genomic DNA Extraction Method for Polymerase Chain Reaction Analysis
In plants, secondary metabolites and polysaccharides interfere with genomic isolation procedures and downstream reactions such as restriction enzyme analysis and gene amplification. The removal of such contaminants needs complicated and time-consuming protocols. In this study, a simple, rapid and efficient method for leaf DNA extraction was optimized. This method use small amount of plant mater...
متن کاملThe Complete Genome of Teredinibacter turnerae T7901: An Intracellular Endosymbiont of Marine Wood-Boring Bivalves (Shipworms)
Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 81 4 شماره
صفحات -
تاریخ انتشار 2015